Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38658738

RESUMO

Elevated hippocampal perfusion has been observed in people at clinical high risk for psychosis (CHR-P). Preclinical evidence suggests that hippocampal hyperactivity is central to the pathophysiology of psychosis, and that peripubertal treatment with diazepam can prevent the development of psychosis-relevant phenotypes. The present experimental medicine study examined whether diazepam can normalize hippocampal perfusion in CHR-P individuals. Using a randomized, double-blind, placebo-controlled, crossover design, 24 CHR-P individuals were assessed with magnetic resonance imaging (MRI) on two occasions, once following a single oral dose of diazepam (5 mg) and once following placebo. Regional cerebral blood flow (rCBF) was measured using 3D pseudo-continuous arterial spin labeling and sampled in native space using participant-specific hippocampus and subfield masks (CA1, subiculum, CA4/dentate gyrus). Twenty-two healthy controls (HC) were scanned using the same MRI acquisition sequence, but without administration of diazepam or placebo. Mixed-design ANCOVAs and linear mixed-effects models were used to examine the effects of group (CHR-P placebo/diazepam vs. HC) and condition (CHR-P diazepam vs. placebo) on rCBF in the hippocampus as a whole and by subfield. Under the placebo condition, CHR-P individuals (mean [±SD] age: 24.1 [±4.8] years, 15 F) showed significantly elevated rCBF compared to HC (mean [±SD] age: 26.5 [±5.1] years, 11 F) in the hippocampus (F(1,41) = 24.7, pFDR < 0.001) and across its subfields (all pFDR < 0.001). Following diazepam, rCBF in the hippocampus (and subfields, all pFDR < 0.001) was significantly reduced (t(69) = -5.1, pFDR < 0.001) and normalized to HC levels (F(1,41) = 0.4, pFDR = 0.204). In conclusion, diazepam normalized hippocampal hyperperfusion in CHR-P individuals, consistent with evidence implicating medial temporal GABAergic dysfunction in increased vulnerability for psychosis.

2.
Dev Psychol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512192

RESUMO

Prenatal alcohol exposure (PAE) affects neurodevelopment in over 59 million individuals globally. Prior studies using dichotomous categorization of alcohol use and comorbid substance exposures provide limited knowledge of how prenatal alcohol specifically impacts early human neurodevelopment. In this longitudinal cohort study from Cape Town, South Africa, PAE is measured continuously-characterizing timing, dose, and drinking patterns (i.e., binge drinking). High-density electroencephalography (EEG) during a visual-evoked potential (VEP) task was collected from infants aged 8 to 52 weeks with prenatal exposure exclusively to alcohol and matched on sociodemographic factors to infants with no substance exposure in utero. First trimester alcohol exposure related to altered timing of the P1 VEP component over the first 6 months postnatally, and first trimester binge drinking exposure altered timing of the P1 VEP components such that increased exposure was associated with longer VEP latencies while increasing age was related to shorter VEP latencies (n = 108). These results suggest alcohol exposure in the first trimester may alter visual neurodevelopmental timing in early infancy. Exploratory individual-difference analysis across infants with and without PAE tested the relation between VEP latencies and myelination for a subsample of infants with usable magnetic resonance imaging (MRI) T1w and T2w scans collected at the same time point as EEG (n = 47). Decreased MRI T1w/T2w ratios (an indicator of myelin) in the primary visual cortex (n = 47) were linked to longer P1 VEP latencies. Results from these two sets of analyses suggest that prenatal alcohol and postnatal myelination may both separately impact VEP latency over infancy. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

3.
Psychol Med ; 53(9): 4012-4021, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35450543

RESUMO

BACKGROUND: Disruptive behavior disorders (DBD) are heterogeneous at the clinical and the biological level. Therefore, the aims were to dissect the heterogeneous neurodevelopmental deviations of the affective brain circuitry and provide an integration of these differences across modalities. METHODS: We combined two novel approaches. First, normative modeling to map deviations from the typical age-related pattern at the level of the individual of (i) activity during emotion matching and (ii) of anatomical images derived from DBD cases (n = 77) and controls (n = 52) aged 8-18 years from the EU-funded Aggressotype and MATRICS consortia. Second, linked independent component analysis to integrate subject-specific deviations from both modalities. RESULTS: While cases exhibited on average a higher activity than would be expected for their age during face processing in regions such as the amygdala when compared to controls these positive deviations were widespread at the individual level. A multimodal integration of all functional and anatomical deviations explained 23% of the variance in the clinical DBD phenotype. Most notably, the top marker, encompassing the default mode network (DMN) and subcortical regions such as the amygdala and the striatum, was related to aggression across the whole sample. CONCLUSIONS: Overall increased age-related deviations in the amygdala in DBD suggest a maturational delay, which has to be further validated in future studies. Further, the integration of individual deviation patterns from multiple imaging modalities allowed to dissect some of the heterogeneity of DBD and identified the DMN, the striatum and the amygdala as neural signatures that were associated with aggression.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Agressão/psicologia , Emoções , Transtornos de Deficit da Atenção e do Comportamento Disruptivo , Mapeamento Encefálico
4.
Personal Neurosci ; 5: e9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105154

RESUMO

Threat avoidance is a prominent symptom of affective disorders, yet its biological basis remains poorly understood. Here, we used a validated task, the Joystick Operated Runway Task (JORT), combined with fMRI, to explore whether abnormal function in neural circuits responsible for avoidance underlies these symptoms. Eighteen individuals with major depressive disorder (MDD) and 17 unaffected controls underwent the task, which involved using physical effort to avoid threatening stimuli, paired with mild electric shocks on certain trials. Activity during anticipation and avoidance of threats was explored and compared between groups. Anticipation of aversive stimuli was associated with significant activation in the dorsal anterior cingulate cortex, superior frontal gyrus, and striatum, while active avoidance of aversive stimuli was associated with activity in dorsal anterior cingulate cortex, insula, and prefrontal cortex. There were no significant group differences in neural activity or behavioral performance on the JORT; however, participants with depression reported more dread while being chased on the task. The JORT effectively identified neural systems involved in avoidance and anticipation of aversive stimuli. However, the absence of significant differences in behavioral performance and activation between depressed and non-depressed groups suggests that MDD is not associated with abnormal function in these networks. Future research should investigate the basis of passive avoidance in major depression. Further, the JORT should be explored in patients with anxiety disorders, where threat avoidance may be a more prominent characteristic of the disorder.

5.
Brain Commun ; 4(1): fcab302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35169702

RESUMO

Chronic pain is a world-wide clinical challenge. Response to analgesic treatment is limited and difficult to predict. Functional MRI has been suggested as a potential solution. However, while most analgesics target specific neurotransmission pathways, functional MRI-based biomarkers are not specific for any neurotransmitter system, limiting our understanding of how they might contribute to predict treatment response. Here, we sought to bridge this gap by applying Receptor-Enriched Analysis of Functional Connectivity by Targets to investigate whether neurotransmission-enriched functional connectivity mapping can provide insights into the brain mechanisms underlying chronic pain and inter-individual differences in analgesic response after a placebo or duloxetine. We performed secondary analyses of two openly available resting-state functional MRI data sets of 56 patients with chronic knee osteoarthritis pain who underwent pre-treatment brain scans in two clinical trials. Study 1 (n = 17) was a 2-week single-blinded placebo pill trial. Study 2 (n = 39) was a 3-month double-blinded randomized trial comparing placebo to duloxetine, a dual serotonin-noradrenaline reuptake inhibitor. Across two independent studies, we found that patients with chronic pain present alterations in the functional circuit related to the serotonin transporter, when compared with age-matched healthy controls. Placebo responders in Study 1 presented with higher pre-treatment functional connectivity enriched by the dopamine transporter compared to non-responders. Duloxetine responders presented with higher pre-treatment functional connectivity enriched by the serotonin and noradrenaline transporters when compared with non-responders. Neurotransmission-enriched functional connectivity mapping might hold promise as a new mechanistic-informed biomarker for functional brain alterations and prediction of response to pharmacological analgesia in chronic pain.

7.
J Physiol ; 599(23): 5243-5260, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34647321

RESUMO

There is a strict interaction between the autonomic nervous system (ANS) and pain, which might involve descending pain modulatory mechanisms. The periaqueductal grey (PAG) is involved both in descending pain modulation and ANS, but its role in mediating this relationship has not yet been explored. Here, we sought to determine brain regions mediating ANS and descending pain control associations. Thirty participants underwent conditioned pain modulation (CPM) assessments, in which they rated painful pressure stimuli applied to their thumbnail, either alone or with a painful cold contralateral stimulation. Differences in pain ratings between 'pressure-only' and 'pressure + cold' stimuli provided a measure of descending pain control. In 18 of the 30 participants, structural scans and two functional MRI assessments, one pain-free and one during cold-pain were acquired. Heart rate variability (HRV) was simultaneously recorded. Normalised low-frequency HRV (LF-HRVnu) and the CPM score were negatively correlated; individuals with higher LF-HRVnu during pain reported reductions in pain during CPM. PAG-ventro-medial prefrontal cortex (vmPFC) and PAG-rostral ventromedial medulla (RVM) functional connectivity correlated negatively with the CPM. Importantly, PAG-vmPFC functional connectivity mediated the strength of the LF-HRVnu-CPM association. CPM response magnitude was also negatively correlated with vmPFC GM volume. Our multi-modal approach, using behavioural, physiological and MRI measures, provides important new evidence of interactions between ANS and descending pain mechanisms. ANS dysregulation and dysfunctional descending pain modulation are characteristics of chronic pain. We suggest that further investigation of body-brain interactions in chronic pain patients may catalyse the development of new treatments. KEY POINTS: Heart rate variability (HRV) is associated with descending pain modulation as measured by the conditioned pain modulation protocol (CPM). There is an association between CPM scores and the functional connectivity between the periaqueductal grey (PAG) and ventro-medial prefrontal cortex (vmPFC). CPM scores are also associated with vmPFC grey matter volume. The strength of functional connectivity between the PAG and vmPFC mediates the association between HRV and CPM. Our data provide new evidence of interactions between the autonomic nervous system and descending pain mechanisms.


Assuntos
Imageamento por Ressonância Magnética , Substância Cinzenta Periaquedutal , Sistema Nervoso Autônomo , Humanos , Vias Neurais , Dor/etiologia
8.
J Headache Pain ; 22(1): 91, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384347

RESUMO

BACKGROUND: Cluster headache is an excruciating disorder with no cure. Greater occipital nerve blockades can transiently suppress attacks in approximately 50% of patients, however, its mechanism of action remains uncertain, and there are no reliable predictors of treatment response. To address this, we investigated the effect of occipital nerve blockade on regional cerebral blood flow (rCBF), an index of brain activity, and differences between treatment responders and non-responders. Finally, we compared baseline perfusion maps from patients to a matched group of healthy controls. METHODS: 21 male, treatment-naive patients were recruited while in a cluster headache bout. During a pain-free phase between headaches, patients underwent pseudo-continuous arterial spin labelled MRI assessments to provide quantitative indices of rCBF. MRIs were performed prior to and 7-to-21 days following treatment. Patients also recorded the frequency of their headache attacks in a daily paper diary. Neuropsychological assessment including anxiety, depression and quality of life measures was performed in a first, scanning free session for each patient. RESULTS: Following treatment, patients demonstrated relative rCBF reductions in posterior temporal gyrus, cerebellum and caudate, and rCBF increases in occipital cortex. Responders demonstrated relative rCBF increases, compared to non-responders, in medial prefrontal cortex and lateral occipital cortex at baseline, but relative reductions in cingulate and middle temporal cortices. rCBF was increased in patients compared to healthy controls in cerebellum and hippocampus, but reduced in orbitofrontal cortex, insula and middle temporal gyrus. CONCLUSIONS: We provide new mechanistic insights regarding the aetiology of cluster headache, the mechanisms of action of occipital nerve blockades and potential predictors of treatment response. Future investigation should determine whether observed effects are reproducible and extend to other headache disorders.


Assuntos
Cefaleia Histamínica , Bloqueio Nervoso , Circulação Cerebrovascular , Cefaleia Histamínica/diagnóstico por imagem , Cefaleia Histamínica/terapia , Humanos , Masculino , Qualidade de Vida , Fluxo Sanguíneo Regional , Marcadores de Spin
9.
J Neurol Neurosurg Psychiatry ; 92(9): 918-926, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34261750

RESUMO

OBJECTIVES: We aimed to investigate changes in regional cerebral blood flow (rCBF) using arterial spin labelling (ASL) in patients with visual snow syndrome (VSS), in order to understand more about the underlying neurobiology of the condition, which remains mostly unknown. METHODS: We performed an MRI study in which whole-brain maps of rCBF were obtained using pseudo-continuous ASL. Twenty-four patients with VSS and an equal number of gender and age-matched healthy volunteers took part in the study. All subjects were examined with both a visual paradigm consisting of a visual-snow like stimulus, simulating key features of the snow, and a blank screen at rest, randomly presented. RESULTS: Patients with VSS had higher rCBF than controls over an extensive brain network, including the bilateral cuneus, precuneus, supplementary motor cortex, premotor cortex and posterior cingulate cortex, as well as the left primary auditory cortex, fusiform gyrus and cerebellum. These areas were largely analogous comparing patients either at rest, or when looking at a 'snow-like' visual stimulus. This widespread, similar pattern of perfusion differences in either condition suggests a neurophysiological signature of visual snow. Furthermore, right insula rCBF was increased in VSS subjects compared with controls during visual stimulation, reflecting a greater task-related change and suggesting a difference in interoceptive processing with constant perception of altered visual input. CONCLUSION: The data suggest VSS patients have marked differences in brain processing of visual stimuli, validating its neurobiological basis.


Assuntos
Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos da Percepção/diagnóstico por imagem , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Imagem de Perfusão , Marcadores de Spin , Adulto Jovem
10.
NPJ Schizophr ; 7(1): 24, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980870

RESUMO

It is unclear whether early psychosis in the context of cannabis use is different from psychosis without cannabis. We investigated this issue by examining whether abnormalities in oculomotor control differ between patients with psychosis with and without a history of cannabis use. We studied four groups: patients in the early phase of psychosis with a history of cannabis use (EPC; n = 28); patients in the early phase of psychosis without (EPNC; n = 25); controls with a history of cannabis use (HCC; n = 16); and controls without (HCNC; n = 22). We studied smooth pursuit eye movements using a stimulus with sinusoidal waveform at three target frequencies (0.2, 0.4 and 0.6 Hz). Participants also performed 40 antisaccade trials. There were no differences between the EPC and EPNC groups in diagnosis, symptom severity or level of functioning. We found evidence for a cannabis effect (χ2 = 23.14, p < 0.001), patient effect (χ2 = 4.84, p = 0.028) and patient × cannabis effect (χ2 = 4.20, p = 0.04) for smooth pursuit velocity gain. There was a large difference between EPC and EPNC (g = 0.76-0.86) with impairment in the non cannabis using group. We found no significant effect for antisaccade error whereas patients had fewer valid trials compared to controls. These data indicate that impairment of smooth pursuit in psychosis is more severe in patients without a history of cannabis use. This is consistent with the notion that the severity of neurobiological alterations in psychosis is lower in patients whose illness developed in the context of cannabis use.

11.
Commun Biol ; 4(1): 574, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990680

RESUMO

Social-communication (SC) and restricted repetitive behaviors (RRB) are autism diagnostic symptom domains. SC and RRB severity can markedly differ within and between individuals and may be underpinned by different neural circuitry and genetic mechanisms. Modeling SC-RRB balance could help identify how neural circuitry and genetic mechanisms map onto such phenotypic heterogeneity. Here, we developed a phenotypic stratification model that makes highly accurate (97-99%) out-of-sample SC = RRB, SC > RRB, and RRB > SC subtype predictions. Applying this model to resting state fMRI data from the EU-AIMS LEAP dataset (n = 509), we find that while the phenotypic subtypes share many commonalities in terms of intrinsic functional connectivity, they also show replicable differences within some networks compared to a typically-developing group (TD). Specifically, the somatomotor network is hypoconnected with perisylvian circuitry in SC > RRB and visual association circuitry in SC = RRB. The SC = RRB subtype show hyperconnectivity between medial motor and anterior salience circuitry. Genes that are highly expressed within these networks show a differential enrichment pattern with known autism-associated genes, indicating that such circuits are affected by differing autism-associated genomic mechanisms. These results suggest that SC-RRB imbalance subtypes share many commonalities, but also express subtle differences in functional neural circuitry and the genomic underpinnings behind such circuitry.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Transtornos do Comportamento Infantil/complicações , Comunicação , Vias Neurais , Transtornos do Neurodesenvolvimento/patologia , Comportamento Estereotipado , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos do Neurodesenvolvimento/etiologia
12.
Psychopharmacology (Berl) ; 238(5): 1279-1289, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-30536081

RESUMO

RATIONALE: Schizophrenia is associated with impairments in cognitive functioning yet there are no approved drugs to treat these deficits. OBJECTIVES: Based on animal models, we investigated the potential for roflumilast, a selective inhibitor of phosphodiesterase type 4 (PDE4), to improve cognition, which may act by increasing intracellular cyclic adenosine monophosphate in brain regions underlying cognitive deficits in schizophrenia. METHODS: This study consisted of a randomised, double-blind, placebo-controlled, crossover design involving 15 schizophrenia patients. In 3 treatment periods, patients were given 8 days of placebo or one of the two doses of roflumilast (100 and 250 µg daily) with 14 days of washout between treatments. The primary endpoints were dorsolateral prefrontal cortex (DLPFC) activation during a visuospatial working memory task measured with fMRI on dosing day 8 and verbal memory and working memory performance change from baseline to day 8. Least square mean change scores were calculated for behavioural outcomes; fMRI data were analysed in SPM12 with bilateral DLPFC as regions of interest. RESULTS: Verbal memory was significantly improved under 250 µg roflumilast (effect size (ES) = 0.77) compared to placebo. fMRI analyses revealed that increasing dose of roflumilast was associated with reduction of bilateral DLPFC activation during working memory compared to placebo, although this was not statistically significant (ES = 0.31 for the higher dose). Working memory was not improved (ES = 0.03). CONCLUSIONS: Results support the mechanistic validation of potential novel strategies for improving cognitive dysfunction in schizophrenia and suggest that PDE4 inhibition may be beneficial for cognitive dysfunction in schizophrenia. TRIAL REGISTRATION: NCT02079844 .


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Esquizofrenia/tratamento farmacológico , Adulto , Animais , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/fisiopatologia , Estudos Cross-Over , Ciclopropanos/farmacologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Memória Episódica , Memória de Curto Prazo/efeitos dos fármacos , Pessoa de Meia-Idade , Córtex Pré-Frontal/efeitos dos fármacos , Esquizofrenia/fisiopatologia
13.
J Psychopharmacol ; 35(1): 15-22, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32854568

RESUMO

BACKGROUND: Patients with schizophrenia have significant cognitive deficits, which may profoundly impair quality of life. These deficits are also evident at the neurophysiological level with patients demonstrating altered event-related potential in several stages of cognitive processing compared to healthy controls; within the auditory domain, for example, there are replicated alterations in Mismatch Negativity, P300 and Auditory Steady State Response. However, there are no approved pharmacological treatments for cognitive deficits in schizophrenia. AIMS: Here we examine whether the phosphodiesterase-4 inhibitor, roflumilast, can improve neurophysiological deficits in schizophrenia. METHODS: Using a randomised, double-blind, placebo-controlled, crossover design study in 18 patients with schizophrenia, the effect of the phosphodiesterase-4 inhibitor, roflumilast (100 µg and 250 µg) on auditory steady state response (early stage), mismatch negativity and theta (intermediate stage) and P300 (late stage) was examined using electroencephalogram. A total of 18 subjects were randomised and included in the analysis. RESULTS: Roflumilast 250 µg significantly enhanced the amplitude of both the mismatch negativity (p=0.04) and working memory-related theta oscillations (p=0.02) compared to placebo but not in the other (early- or late-stage) cognitive markers. CONCLUSIONS: The results suggest that phosphodiesterase-4 inhibition, with roflumilast, can improve electroencephalogram cognitive markers, which are impaired in schizophrenia, and that phosphodiesterase-4 inhibition acts at an intermediate rather than early or late cognitive processing stage. This study also underlines the use of neurophysiological measures as cognitive biomarkers in experimental medicine.


Assuntos
Aminopiridinas , Benzamidas , Cognição , Disfunção Cognitiva , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Potenciais Evocados/efeitos dos fármacos , Esquizofrenia , Adulto , Aminopiridinas/administração & dosagem , Aminopiridinas/efeitos adversos , Benzamidas/administração & dosagem , Benzamidas/efeitos adversos , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/psicologia , Estudos Cross-Over , Ciclopropanos/administração & dosagem , Ciclopropanos/efeitos adversos , Método Duplo-Cego , Monitoramento de Medicamentos/métodos , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Processos Mentais/efeitos dos fármacos , Processos Mentais/fisiologia , Inibidores da Fosfodiesterase 4/administração & dosagem , Inibidores da Fosfodiesterase 4/efeitos adversos , Escalas de Graduação Psiquiátrica , Esquizofrenia/diagnóstico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Resultado do Tratamento
14.
Sci Rep ; 10(1): 11475, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651433

RESUMO

The increased awareness of obstructive sleep apnoea's (OSA) links to Alzheimer's disease and major psychiatric disorders has recently directed an intensified search for their potential shared mechanisms. We hypothesised that neuroinflammation and the microglial TLR2-system may act as a core process at the intersection of their pathophysiology. Moreover, we postulated that inflammatory-response might underlie development of key behavioural and neurostructural changes in OSA. Henceforth, we set out to investigate effects of 3 weeks' exposure to chronic intermittent hypoxia in mice with or without functional TRL2 (TLR2+/+, C57BL/6-Tyrc-Brd-Tg(Tlr2-luc/gfp)Kri/Gaj;TLR2-/-,C57BL/6-Tlr2tm1Kir). By utilising multimodal imaging in this established model of OSA, a discernible neuroinflammatory response was demonstrated for the first time. The septal nuclei and forebrain were shown as the initial key seed-sites of the inflammatory cascade that led to wider structural changes in the associated neurocircuitry. Finally, the modulatory role for the functional TLR2-system was suggested in aetiology of depressive, anxious and anorexiolytic symptoms in OSA.


Assuntos
Imunidade Inata/genética , Inflamação/genética , Apneia Obstrutiva do Sono/genética , Receptor 2 Toll-Like/genética , Animais , Anorexia/genética , Anorexia/imunologia , Ansiedade/genética , Ansiedade/imunologia , Depressão/genética , Depressão/imunologia , Humanos , Hipóxia/genética , Hipóxia/imunologia , Inflamação/imunologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Prosencéfalo/metabolismo , Prosencéfalo/patologia , Núcleos Septais , Apneia Obstrutiva do Sono/imunologia , Apneia Obstrutiva do Sono/patologia
15.
Hum Brain Mapp ; 41(15): 4386-4396, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32687254

RESUMO

Around half of patients with early psychosis have a history of cannabis use. We aimed to determine if there are neurobiological differences in these the subgroups of persons with psychosis with and without a history of cannabis use. We expected to see regional deflations in hippocampus as a neurotoxic effect and regional inflations in striatal regions implicated in addictive processes. Volumetric, T1w MRIs were acquired from people with a diagnosis psychosis with (PwP + C = 28) or without (PwP - C = 26) a history of cannabis use; and Controls with (C + C = 16) or without (C - C = 22) cannabis use. We undertook vertex-based shape analysis of the brainstem, amygdala, hippocampus, globus pallidus, nucleus accumbens, caudate, putamen, thalamus using FSL FIRST. Clusters were defined through Threshold Free Cluster Enhancement and Family Wise Error was set at p < .05. We adjusted analyses for age, sex, tobacco and alcohol use. The putamen (bilaterally) and the right thalamus showed regional enlargement in PwP + C versus PwP - C. There were no areas of regional deflation. There were no significant differences between C + C and C - C. Cannabis use in participants with psychosis is associated with morphological alterations in subcortical structures. Putamen and thalamic enlargement may be related to compulsivity in patients with a history of cannabis use.


Assuntos
Uso da Maconha/patologia , Transtornos Psicóticos/patologia , Putamen/fisiologia , Tálamo/patologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Psicóticos/diagnóstico por imagem , Putamen/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto Jovem
16.
Neuroimage ; 221: 117178, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707236

RESUMO

Functional neuroimaging techniques have provided great insight in the field of pain. Utilising these techniques, we have characterised pain-induced responses in the brain and improved our understanding of key pain-related phenomena. Despite the utility of these methods, there remains a need to assess the test retest reliability of pain modulated blood-oxygen-level-dependant (BOLD) MR signal across repeated sessions. This is especially the case for more novel yet increasingly implemented stimulation modalities, such as noxious pressure, and it is acutely important for multi-session studies considering treatment efficacy. In the present investigation, BOLD signal responses were estimated for noxious-pressure stimulation in a group of healthy participants, across two separate sessions. Test retest reliability of functional magnetic resonance imaging (fMRI) data and self-reported visual analogue scale measures were determined by the intra-class correlation coefficient. High levels of reliability were observed in several key brain regions known to underpin the pain experience, including in the thalamus, insula, somatosensory cortices, and inferior frontal regions, alongside "excellent" reliability of self-reported pain measures. These data demonstrate that BOLD-fMRI derived signals are a valuable tool for quantifying noxious responses pertaining to pressure stimulation. We further recommend the implementation of pressure as a stimulation modality in experimental applications.


Assuntos
Mapeamento Encefálico/normas , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/normas , Nociceptividade/fisiologia , Dor/fisiopatologia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Dor/diagnóstico por imagem , Medição da Dor , Pressão , Reprodutibilidade dos Testes , Autorrelato , Adulto Jovem
17.
Neurol Res ; 42(10): 844-852, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600164

RESUMO

OBJECTIVES: After cerebral ischaemia the blood-brain barrier (BBB) may be compromised and this has been observed in both clinical and preclinical studies. The timing of BBB disruption after ischaemia has long been considered to be biphasic, however some groups contest this view. Therefore, the purpose of this study was to characterize the BBB permeability timecourse in a rat model at both acute and chronic time points. METHODS: Unilateral transient middle cerebral artery occlusion (tMCAO) was performed in 15 male Sprague Dawley rats. Change in T1-weighted MR signal before and after an injection of gadolinium-based contrast agent was calculated voxelwise to derive a BBB permeability index (BBBPI) at both early (6 h, 12 h, and 24 h) and late (7 and 14 days) time points. RESULTS: As expected, BBBPI in the non-lesioned ROI was not significantly different from pre-occlusion baseline at any time point. However, BBBPI in the ipsilateral (lesioned) ROI was statistically different to baseline at day 7 (p < 0.001) and day 14 (p < 0.01) post-tMCAO. There was a small, but not-significant increase in BBBPI in the earlier phase (at 6 hours). DISCUSSION: Our results indicate a significant late opening of the BBB. This is important as the majority of previous studies have only characterised an early acute BBB permeability in ischemia. However, the later period of increased permeability may indicate an optimal time for drug delivery across the BBB, when it is especially suited to drugs targeting delayed processes.


Assuntos
Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/metabolismo , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/metabolismo , Animais , Meios de Contraste , Modelos Animais de Doenças , Gadolínio , Aumento da Imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Ratos Sprague-Dawley , Fatores de Tempo
18.
Sleep Med Rev ; 52: 101317, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32446196

RESUMO

Early studies posited a relationship between sleep and the basal ganglia, but this relationship has received little attention recently. It is timely to revisit this relationship, given new insights into the functional anatomy of the basal ganglia and the physiology of sleep, which has been made possible by modern techniques such as chemogenetic and optogenetic mapping of neural circuits in rodents and intracranial recording, functional imaging, and a better understanding of human sleep disorders. We discuss the functional anatomy of the basal ganglia, and review evidence implicating their role in sleep. Whilst these studies are in their infancy, we suggest that the basal ganglia may play an integral role in the sleep-wake cycle, specifically by contributing to a thalamo-cortical-basal ganglia oscillatory network in slow-wave sleep which facilitates neural plasticity, and an active state during REM sleep which enables the enactment of cognitive and emotional networks. A better understanding of sleep mechanisms may pave the way for more effective neuromodulation strategies for sleep and basal ganglia disorders.


Assuntos
Gânglios da Base/fisiopatologia , Vias Neurais/fisiologia , Transtornos do Sono-Vigília/fisiopatologia , Sono/fisiologia , Humanos
19.
Transl Psychiatry ; 10(1): 111, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317625

RESUMO

The associative striatum, an established substrate in psychosis, receives widespread glutamatergic projections. We sought to see if glutamatergic indices are altered between early psychosis patients with and without a history of cannabis use and characterise the relationship to grey matter. 92 participants were scanned: Early Psychosis with a history of cannabis use (EPC = 29); Early Psychosis with minimal cannabis use (EPMC = 25); Controls with a history of cannabis use (HCC = 16) and Controls with minimal use (HCMC = 22). Whole brain T1 weighted MR images and localised proton MR spectra were acquired from head of caudate, anterior cingulate and hippocampus. We examined relationships in regions with known high cannabinoid 1 receptor (CB1R) expression (grey matter, cortex, hippocampus, amygdala) and low expression (white matter, ventricles, brainstem) to caudate Glutamine+Glutamate (Glx). Patients were well matched in symptoms, function and medication. There was no significant group difference in Glx in any region. In EPC grey matter volume explained 31.9% of the variance of caudate Glx (p = 0.003) and amygdala volume explained 36.9% (p = 0.001) of caudate Glx. There was no significant relationship in EPMC. The EPC vs EPMC interaction was significant (p = 0.042). There was no such relationship in control regions. These results are the first to demonstrate association of grey matter volume and striatal glutamate in the EPC group. This may suggest a history of cannabis use leads to a conformational change in distal CB1 rich grey matter regions to influence striatal glutamatergic levels or that such connectivity predisposes to heavy cannabis use.


Assuntos
Cannabis , Carcinoma Hepatocelular , Neoplasias Hepáticas , Transtornos Psicóticos , Ácido Glutâmico , Humanos , Imageamento por Ressonância Magnética , Transtornos Psicóticos/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...